# Lecture Notes: 4-3 How Derivatives Affect the Shape of a Graph <br> (PART 1) 

Motivating Example: For each function graphed below, identify the regions of its domain where the function is increasing and where it is decreasing.

$f(x)$ is increasing:
$f(x)$ is decreasing:

$f(x)$ is increasing:
$f(x)$ is decreasing:

QUESTION 1: Using language a middle school kid could understand, how would you explain what it means to say a function is increasing or decreasing?

QUESTION 2: Draw a few sample tangent lines to each graph above. What is the relationship between the slope of the tangent lines and whether the graph is increasing or decreasing?

## Increasing/Decreasing Test

(a) If $\qquad$ on an interval, then the function $f(x)$ is increasing on this interval.
(b) If $\qquad$ on an interval, then the function $f(x)$ is decreasing on this interval.

PRACTICE PROBLEM 1: Let $g(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$.

1. Use the Increasing/Decreasing Test to find the intervals where $g(x)$ is increasing and decreasing.
2. Sketch the graph on your calculator to check that your answer above is correct.
3. What do you observe about the relationship between local maximums, local minimums and intervals of increase and decrease? Make an explicit conjecture.
4. Go back and look at the examples at the top of page 1 and see if you need to amend your conjecture above.

## QUESTION 3: What is a critical number again?

The First Derivative Test: Suppose that $c$ is a critical number of a continuous function $f(x)$.
a) If $\qquad$ at $c$, then $f$ has a local maximum at $c$.
b) If $\qquad$ at $c$, then $f$ has a local minimum at $c$.
c) If $\qquad$ at $c$, then $f$ has no local maximum or minimum at $c$.

Using the work from the previous Practice Problem 1 , fill in the blanks below for $g(x)=3 x^{4}-$ $4 x^{3}-12 x^{2}+5$.
(a) $\qquad$ is a local minimum of $g(x)$ that occurs at $\qquad$
(b) $\qquad$ is a local minimum of $g(x)$ that occurs at $\qquad$
(c) $\qquad$ is a local maximum of $g(x)$ that occurs at $\qquad$

PRACTICE PROBLEM 2: Sketch the graph of a function $h(x)$ satisfying all the properties below:

1. domain $(-\infty, \infty)$
2. $h^{\prime}(x)>0$ on $(-\infty, 0) \cup(2, \infty)$
3. $h^{\prime}(x)<0$ on $(0,2)$
4. $h^{\prime}(0)$ is undefined, $h^{\prime}(2)=0$

Motivating Examples: On the sample graphs below, sketch some rough tangent lines. Sketch multiple tangents on each graph. Make rough approximations of the slopes of these tangents.

## concave up

pictures

concavedown
 pictures
QUESTION 4: How does the relationship between the tangent line and the graph to which it is tangent differ depending on whether the graph is concave up or concave down?

QUESTION 5: If the graphs above are of a function, say $f(x)$, what can you say about its derivative $f^{\prime}(x)$ ?

QUESTION 6: Estimate the intervals where each function below is concave up and concave down:

$f(x)$ is concave up:
$f(x)$ is concave down:

$f(x)$ is concave up:
$f(x)$ is concave down:

DEFINITION: A point $P$ on a curve $y=f(x)$ is called an inflection point if $f$ is continuous there and the curve changes from concave upward to concave downward or vice versa at $P$.

QUESTION 6: Do the graphs on the previous page have any inflection points?

Concavity Test \& Inflection Points: Let $f(x)$ be a function defined on an interval $I$.
a) If $\qquad$ (that is: $\qquad$ ) for all $x$ in $I$, then the graph of $f$ is concave upward on $I$.
b) If $\qquad$ (that is: $\qquad$ ) for all $x$ in $I$, then the graph of $f$ is concave downward on $I$.

Practice Problem 3: Let $f(x)=2 x^{3}-3 x^{2}-12 x$. Find the intervals of concavity and the inflection points.

